ارزیابی عملکرد مدل های شبکه عصبی مصنوعی، نروفازی و رگرسیون چند متغیره در پیش بینی مقاومت فشاری بتن به کمک روش بارنقطه ای

نویسندگان

چکیده مقاله:

امروزه تعیین مقاومت بتن درجا مورد توجه می‌باشد. ضرورت انجام آزمایشات درجا را می‌توان در عامل‌های مختلفی چون تغییر یا توسعه سازه، بررسی کیفیت، ارزیابی مقاومت و عملکرد بتن جستجو نمود. در این پژوهش عملکرد مدل‌های شبکه عصبی مصنوعی، نروفازی تطبیقی و رگرسیون چندمتغیره با هدف سنجش مقاومت فشاری بتن با روش بارنقطه‌ای مورد مطالعه قرار می‌گیرد. همچنین رابطه‌ای محاسباتی بر اساس روش رگرسیون چند‌متغیره برای پیش‌بینی مقاومت فشاری بتن با روش بارنقطه‌ای ارائه می‌گردد. نتیجه‌ها نشان‌دهنده مناسب بودن مدل‌های شبکه عصبی، نروفازی و رگرسیون در پیش‌بینی مقاومت بتن به روش بارنقطه‌ای می‌باشد. ضریب همبستگی برای مدل شبکه عصبی، نروفازی و رگرسیون غیر خطی به ترتیب 9412/0، 8244/0 و 8938/0 می‌باشند که نشاندهنده خطای کمتر و در‌نتیجه دقت و عملکرد بهتر شبکه عصبی در پیش‌بینی مقاومت بتن به روش بارنقطه‌ای دارد. نتیجه این پژوهش نشان داد که توافق خوبی میان سنجش مقاومت فشاری بتن به کمک روش‌های مبتنی بر محاسبات نرم و مشاهدات واقعی وجود دارد که علاوه بر سهولت، موجب کاهش زمان ارزیابی مقاومت بتن درجا و کاهش هزینه‌ی مطالعات آزمایشگاهی می‌شود.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

مقایسه روش های نروفازی، شبکه عصبی و رگرسیون چند متغیره در پیش بینی برخی خصوصیات خاک (مطالعه موردی: استان گلستان)

با توجه به مشکلات اندازه گیری مستقیم برخی از ویژگی های خاک، در سال های اخیر از روش های غیر مستقیم برای برآورد این خصوصیات استفاده می شود. بدین منظور، در این پژوهش140 نمونه جمع آوری شده از منطقه گرگان مورد آزمایش قرار گرفته و فراوانی نسبی ذرات، کربن آلی، درصد رطوبت اشباع و آهک به عنوان ویژگی های زودیافت و نقطه پژمردگی، ظرفیت زراعی، ظرفیت تبادل کاتیونی و وزن مخصوص ظاهری به عنوان ویژگی های دیریافت...

متن کامل

استفاده از شبکه عصبی GMDH تعمیم‌یافته برای پیش‌بینی مقاومت فشاری بتن به کمک روش مغزه‌گیری

در این مطالعه، شبکه عصبی GMDH با ساختار عمومی (تعمیم‌یافته) با موفقیت برای مدل‌سازی روش مغزه­گیری حاوی میل‌گرد و بر پایه نتایج گسترده آزمایشگاهی بکار گرفته شده است. الگوریتم ژنتیک و روش تجزیه مقادیر منفرد برای تعیین ساختار بهینه مدل گسترش یافته‌اند. مجموعه داده‌های ورودی و خروجی برای آموزش و آزمایش مدل­های استخراج‌شده شامل متغیرهای قطر مغزه بتنی، نسبت ابعاد مغزه، تعداد میل‌گردهای داخل مغزه، فاص...

متن کامل

شبکه‎های عصبی مصنوعی برای پیش بینی مقاومت فشاری بتن: پس انتشار خطا و شبکه اِلمان

در سال های اخیر، شبکه های عصبی مصنوعی کاربرد های بسیار زیادی در علوم مختلف مهندسی، از جمله مهندسی عمران پیدا نموده است. در این مقاله از دو نوع شبکة عصبی مصنوعی با سه ساختار مختلف، برای پیش بینی مقاومت فشاری بتن استفاده شده است. در این مطالعه، نوع جدیدی از شبکه های عصبی مصنوعی، به نام شبکة عصبیِ بازگشتی المان (elman networks recurrent ) معرفی شده و مقاومت نمونه های بتنی با استفاده از این شبکه ها ...

متن کامل

مقایسه دقت پیش بینی شبکه های عصبی مصنوعی و رگرسیون لجستیک دو متغیره در تشخیص هم‏زمان بیماری فشارخون و دیابت

  Background : Diabetes and hypertension are from important non-communicable diseases in the world and their prevalence are very important for health authorities. The objective of this study was to compare the predictive precision of joint logistic regression (LR) and artificial neutral network (ANN) in concurrent diagnosis of diabetes and hypertension.   Methods : This cross-sectional study wa...

متن کامل

پیش بینی مقاومت فشاری بتن حاوی خاکستر بادی، میکروسیلیس و سرباره ی مس با استفاده از روش های آماری ، شبکه ی عصبی مصنوعی و منطق فازی

در پژوهش حاضر، به پیش‌بینی مقاومت فشاری بتن حاوی پوزولان به کمک شبکه‌ی عصبی مصنوعی و تحلیل رگرسیون پرداخته شده است. اطلاعات به کاررفته شامل ۸۰ نمونه است که مقاومت فشاری ۷ و ۲۸ روزه‌ی آن‌ها تعیین شده است. در بخش شبکه‌ی عصبی مصنوعی از یک شبکه‌ی پرسپترون چند لایه با الگوریتم‌های متفاوت آموزشی پس انتشار خطا و تعریف یک یا چند لایه‌ی مخفی و تعداد ۷ نورون در لایه‌ی ورودی و ۱ نورون در لایه‌ی خروجی استف...

متن کامل

منابع من

با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ذخیره در منابع من قبلا به منابع من ذحیره شده

{@ msg_add @}


عنوان ژورنال

دوره 18  شماره 62

صفحات  -

تاریخ انتشار 2020-10-22

با دنبال کردن یک ژورنال هنگامی که شماره جدید این ژورنال منتشر می شود به شما از طریق ایمیل اطلاع داده می شود.

میزبانی شده توسط پلتفرم ابری doprax.com

copyright © 2015-2023